본문 바로가기

전체 글79

데이터셋 - 탐지 및 표지 안녕하세요! 이번에는 영상 데이터 중 물체를 탐지할 때 사용할 수 있는 데이터셋에 대해 알아보겠습니다. https://cocodataset.org/#home COCO - Common Objects in Context cocodataset.org 데이터셋의 규모가 굉장히 크고, 세계적으로 많은 연구자들이 인용하여 활용한 데이터이므로 반드시 활용해야 하는 중요한 데이터셋입니다. 저 또한 VQA 모델을 학습할 때 사용했던 기억이 나네요. * COCO Panoptic Segmentation Task 영상 내의 모든 픽셀을 대상으로 한 세그멘테이션 데이터입니다. * COCO Object Detection Task 픽셀 단위 레이블링을 제공하는 데이터셋입니다. 80종 이상의 카테고리의 이미지와 레이블된 이미지가 포.. 2022. 9. 14.
데이터셋 - 이미지 분류 안녕하세요! 저번 데이터 포털 관련 글에 이어서 조금 더 구체적인 데이터셋을 추천하고자 글을 남깁니다. 이미지 분류에 대한 데이터셋!! 지금 시작합니다~ https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/#metric FGVC-Aircraft FGVC-Aircraft Benchmark Fine-Grained Visual Classification of Aircraft (FGVC-Aircraft) is a benchmark dataset for the fine grained visual categorization of aircraft. Please use the following citation when referring to this dataset: Fine-G.. 2022. 9. 13.
데이터 포털 안녕하세요! 오늘은 AI 프로젝트 활동시 사용할 수 있는 데이터셋에 대해 알아보겠습니다. 그중에서도 여러 데이터셋을 받아올 수 있는 몇가지 데이터 포털에 대해 알아보겠습니다. https://www.tensorflow.org/datasets?hl=ko TensorFlow Datasets TensorFlow와 함께 사용할 준비가 된 데이터 세트 모음입니다. www.tensorflow.org 현재까지 연구 및 학술 분야에서 가장 활용도가 높은 데이터 포털입니다. 대부분의 데이터셋들이 학회에서 공개되었거나, 무수히 많은 인용을 받은 데이터입니다. https://www.aihub.or.kr AI-Hub AI 허브 데이터 검색 추천검색어 www.aihub.or.kr 공공데이터 및 국책사업 등의 경로를 통하여 수집된.. 2022. 9. 13.
[AI 개념 다지기] Activation Function(Sigmoid) 안녕하세요! 오늘은 ANN의 구성 요소 중 하나인 활성화 함수에 대해서 알아보겠습니다! 출력신호를 뉴런에서 내보낼지 말지를 결정을 하는 것을 활성화 함수(Activation Function)라고 부릅니다. 여러 종류의 활성화 함수가 있고, 활성화 함수의 결정이 결과에 큰 영향이 생깁니다. 먼저 Odds 함수 입니다. 확률이 1에 가까워질수록 무한대의 값을 갖는 것이 특징입니다. 하지만, 0.5라는 확률에도 odds가 대칭적이지 않기 때문에, 우리는 odds에 새로운 개념을 넣어봅니다.. Logit 함수라는 것인데 0.5를 기준으로 위아래로 대칭이 되는 것을 볼 수 있습니다. 이 Logit 함수를 토대로 식을 정리하면, l의 값이 -무한대부터 +무한대 사이에 값이라고 한다면 출력 결과 p는 0과 1사이의 .. 2022. 8. 3.
[AI 개념 다지기] Dense Layer 안녕하세요 Foxy현입니다. 오늘은 Layer라는 개념에 대해서 배우고 Jupyter로 구현해보겠습니다! 인공신경망의 가장 기본이 되는 내용중 하나이므로 꼭 이해하고 넘어가셨으면 좋겠습니다 먼저, Layer는 뉴런들의 집합입니다. 또 필터들의 묶음이라고 말할 수 있습니다. 각각 서로 다른 Paramatric Function을 가지고 있는 묶음입니다! 서로 다른 PF가 들어가기 때문에 각 뉴런에서는 서로 다른 출력이 나올 수 있습니다. (Input이 같거나 다르더라도 각 뉴런에서의 Output은 다르다) Dense Layer는 추출된 feature들을 하나의 Layer로 모으고, 우리가 원하는 Tensor로 표현하기 위한 Layer입니다. 각 뉴런은 이전 계층의 모든 뉴런으로부터 입력을 받게 됩니다. 다시.. 2022. 8. 2.
[AI 개념 다지기] Affine Function 안녕하세요 Foxy현입니다. Articial Neuron을 만들기 위해 Activation Function과 Affine Function이라는 것이 필요합니다. 오늘은 그중 Affine Function에 대해 알아 보겠습니다. Affine Function에 대해 설명하기 앞서 Weighted Sum(가중치 합)에 대해 알아 보겠습니다. Weighted Sum은 가중치 w들을 각각의 feature x에 대해 곱하여 더하는 것을 의미합니다. 우리는 Weighted sum에 bias(b)를 더해준 것을 Affine Function이라고 부릅니다. 이때, 행 벡터 x와 열벡터 w가 하나씩 대응되어 곱해지며, 이 두 벡터의 dot product를 통해 스칼라 값을 도출하게 됩니다. 이에 bias를 더해 Affin.. 2022. 8. 1.
[AI 개념 다지기] Tensor 안녕하세요 Foxy현입니다. 딥러닝 및 머신러닝 공부 시 vector 및 matrix 개념에서 종종 접할 수 있는 Tensor가 무엇인지에 대한 개념을 정리하는 시간을 갖도록 하겠습니다. Tensor tensor는 우리가 지금까지 알던 scalar, vector, matrix를 더 넓은 의미로 부르는 말입니다. 매우 수학적인 개념으로, 데이터의 배열이라고 볼 수 있겠습니다. #스칼라 scalar = 42 #벡터 vector = [1,2,3] #행렬 matrix = [ [1,2,3], [4,5,6], ] #텐서 tensor = [ [ [1,2,3], [4,5,6], ], [ [7,8,9], [10,11,12], ], ] 여기서, rank라는 게 있는데 차원을 의미합니다. 스칼라는 일반적으로 존재하는 값을 .. 2022. 8. 1.