본문 바로가기

분류 전체보기79

SimpleITK : 의료 이미지 분석을 위한 라이브러리 What is SimpleITK? SimpleITK는 의료 이미지 분석을 위한 라이브러리입니다.다양한 의료 이미지 형식을 지원하며, 이미지 처리, 세그멘테이션, 정합 등의 기능을 제공합니다.주요 특징:다양한 이미지 포맷 지원 (DICOM, NIFTI, JPEG, PNG 등)이미지 처리(Filtering, Segmentation) 및 정합(Registration) 기능 제공2D 및 3D 이미지를 다룸How to install SimleITK?!pip install SimpleITK  또한 이렇게 설치된 것을 아래의 코드를 통해 확인할 수 있습니다. import SimpleITK as sitkprint("SimpleITK Version : ", sitk.Version())  Read Data이번 코드에서는 .. 2024. 10. 10.
GAN : 쉽게 이해하는 가이드 GAN은 인공지능과 머신러닝 분야에서 가장 흥미로운 발전 중 하나로, 실제와 거의 구분되지 않는 현실적인 이미지, 비디오, 기타 데이터 타입을 생성하는 능력으로 잘 알려져 있습니다.  이제 GAN이 무엇인지, 어떻게 작동하는지, 그리고 왜 이렇게 강력한지 알아보겠습니다. 참고로, 쉽게 설명하고자 비유를 많이 사용하였습니다. 이점 양해 부탁드립니다.  GAN이란?                                                                                                         GAN은 Generator와 Discriminator라는 두 부분으로 구성됩니다.이 두 구성 요소는 마치 서로 경쟁하는 두 팀처럼 작동하며, 시간이 지남에 따라 .. 2024. 8. 26.
XAI란 무엇인가? 인공지능(AI)과 기계 학습(ML)이 점점 더 많은 분야에서 사용되면서, AI가 내리는 결정에 대한 이해와 신뢰는 중요한 과제로 부상하고 있습니다. XAI(설명 가능한 인공지능)는 이러한 필요를 충족시키기 위해 등장한 개념으로, 복잡한 AI 모델의 결정을 사람이 이해할 수 있도록 설명해주는 기술을 의미합니다.XAI의 정의와 필요성XAI는 본질적으로 "Black Box" 모델의 내부 작동 방식을 해석하고 설명하는 것을 목표로 합니다. "Black Box" 모델은 높은 예측 정확도를 제공하지만, 내부 구조가 복잡하여 그 작동 원리나 결정 과정을 인간이 직접 이해하기 어렵습니다. 인공 신경망(Neural Networks)이나 랜덤 포레스트(Random Forest)와 같은 복잡한 모델이 이러한 범주에 속합니다.. 2024. 8. 21.
[논문 리뷰] Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using small Recurrent and Convolutional Neural Networks 위 논문은 CNN, LSTM, GRU 등의 모델을 이용하여 CAN Sensor의 시계열 데이터의 이상 상황을 탐지를 한다는 연구입니다.  AbstractCAN 센서에서 생성된 시계열 데이터를 분석하여 비지도 학습을 기반으로 한 Anomaly Detection을 제안합니다.작은 규모의 RNN과 CNN을 사용하여 다차원적인 시계열 데이터를 효율적으로 처리하고자 합니다. Introduction and Related Work자동차 산업에서 Predictive Maintenance는 차량에서 발생하는 이상과 고장을 사전에 감지하는 것을 목표로 합니다.차량은 복잡하고 다양한 센서들의 데이터로 구성되어 Multidimensional Time Series Data가 생성되게 됩니다. Car Time Series Ext.. 2024. 8. 11.