IT64 [논문리뷰] Change Point Enhanced Anomaly Detection for IoT Time Series Data "Change Point Enhanced Anomaly Detection for IoT Time Series Data"는 변화 지점 검출을 통해 IoT 시계열 데이터의 오탐을 줄이고 이상 탐지의 정확성을 높이는 새로운 규칙 기반의 의사 결정 시스템을 제안한 논문입니다. 아래는 위 논문의 요약 및 설명입니다. Abstract갑작스러운 변화 지점을 정상 행동과 함께 탐지하고 이를 통해 비정상 행동, 즉 이상치를 구별하는 것은 오탐률을 최소화하고 예측 및 예보를 위한 정확한 기계 학습 모델을 구축하는 데 중요한 단계입니다. 이 논문은 IoT 센서에서 수집된 수자원 데이터에 초점을 맞추어, 변화 지점 검출을 통한 시계열 데이터의 이상 탐지를 향상시키는 새로운 자동화된 지능형 규칙 기반 의사 결정 지원 시스템을 .. 2024. 8. 2. [AI] R-CNN 내용 정리 Object Detection 컴퓨터 비전과 이미지 처리 분야에서, Object Detection은 디지털 이미지와 비디오에서 특정한 계열의 Semantic Instance를 자동으로 감지하는 기술입니다. 이미지 내에서 사물의 위치와 클래스를 정확하게 찾는 작업을 포함하며, 그 중에서도 얼굴 검출, 보행자 검출과 같은 다양한 응용 분야에서 활용되고 있습니다. 물체에 대해 어떠한 물체인지 클래스를 분류하는 문제와, 그 물체가 어디 있는지 Bounding Box를 통해 위치 정보를 나타내는 Localization 문제를 포함하고 있습니다. 크게 두 방법으로, 나눠져 있으며 1-Stage Detector, 2-Stage Detector로 구분할 수 있습니다. 1-Stage Detector : 물체의 위치를 찾.. 2023. 10. 12. [Streamlit] Streamlit을 사용한 붓꽃 데이터 시각화 프로젝트 이 글에서는 Streamlit과 Seaborn 라이브러리를 활용하여 붓꽃(iris) 데이터를 시각화하는 방법을 소개합니다. 붓꽃 데이터 로드 및 웹 앱 구조 설정 _, col, _ = st.columns([2,6,2]) col.header('Streamlit 시각화') iris_df = sns.load_dataset('iris') 사이드바를 활용한 변수 및 옵션 선택 사용자는 사이드바에서 X 축과 Y 축 변수를 선택하며, 특정 붓꽃 유형 및 그래프의 투명도(alpha)도 설정할 수 있습니다. with st.sidebar: selectX = st.selectbox('X 변수 선택:', ['sepal_length','sepal_width','petal_length','petal_width']) selectY.. 2023. 8. 9. [Streamlit] Streamlit의 기초! 간단한 시각화해보기 데이터를 웹 애플리케이션에 시각화할 때, Streamlit은 간단하면서도 효과적인 기본 차트를 제공합니다. 이번 글에서는 임의의 데이터를 생성하고 Streamlit을 사용하여 다양한 차트로 시각화하는 방법을 소개합니다. 데이터 생성하기 NumPy를 활용하여 30x3 크기의 랜덤 데이터를 생성하고, 이를 pandas 데이터프레임으로 변환합니다. myData = np.random.randn(30,3) df = pd.DataFrame(data=myData, columns=['a','b','c']) 1. 선 차트(Line Chart) 데이터프레임의 각 열을 시계열 또는 순차적 데이터로 해석하여 선 차트를 그립니다. st.line_chart(df) 2. 영역 차트(Area Chart) 선 차트와 유사하나, 각 선.. 2023. 8. 9. 이전 1 2 3 4 ··· 16 다음