AI51 [Streamlit] Streamlit의 기초! 간단한 시각화해보기 데이터를 웹 애플리케이션에 시각화할 때, Streamlit은 간단하면서도 효과적인 기본 차트를 제공합니다. 이번 글에서는 임의의 데이터를 생성하고 Streamlit을 사용하여 다양한 차트로 시각화하는 방법을 소개합니다. 데이터 생성하기 NumPy를 활용하여 30x3 크기의 랜덤 데이터를 생성하고, 이를 pandas 데이터프레임으로 변환합니다. myData = np.random.randn(30,3) df = pd.DataFrame(data=myData, columns=['a','b','c']) 1. 선 차트(Line Chart) 데이터프레임의 각 열을 시계열 또는 순차적 데이터로 해석하여 선 차트를 그립니다. st.line_chart(df) 2. 영역 차트(Area Chart) 선 차트와 유사하나, 각 선.. 2023. 8. 9. [Streamlit] Streamlit의 기초! 파일 올리고 내려받기 데이터 분석 및 시각화 웹 애플리케이션에서 사용자에게 특정 데이터를 다운로드할 수 있는 기능을 제공하는 것은 꽤 흔한 요구사항입니다. Streamlit은 이를 위한 간편한 st.download_button() 함수를 제공합니다. 이번 글에서는 Streamlit을 사용하여 데이터프레임을 CSV 파일로 다운로드하는 버튼을 어떻게 구현하는지 살펴보겠습니다. 파일 내려받기 간단한 예제를 위해, pandas를 사용하여 3개의 행을 갖는 데이터프레임을 생성합니다. df = pd.DataFrame(data={'Columns':[1,2,3]}) st.dataframe(df) st.download_button(label='파일 내려 받기', data=df.to_csv(), file_name='myDf.csv') 파일 업.. 2023. 8. 9. [Streamlit] Streamlit의 기초! 타이머 구현하기 Streamlit으로 동적인 카운트다운 타이머 구현하기 Streamlit을 사용하여 웹 애플리케이션에 동적인 요소를 추가하는 것은 꽤 간단합니다. 이번 글에서는 Streamlit을 활용하여 카운트다운 타이머를 어떻게 구현하는지 살펴보겠습니다. 1. 초기 메시지 설정하기 st.empty() 함수를 사용하여 나중에 내용을 업데이트 할 수 있는 빈 영역을 생성합니다. y = st.empty() y.write('Please Click Start Button') 2. 버튼 구성하기 st.columns() 함수를 사용하여 여러 개의 버튼을 옆으로 배열합니다. c1,c2,c3,_ = st.columns([1,1,1,5]) start = c1.button('시작', key=1) clear = c2.button('클리어.. 2023. 8. 9. [Streamlit] Streamlit의 기초! Sidebar Streamlit의 사이드바로 인터랙티브한 웹 애플리케이션 구축하기 데이터 애플리케이션에서 사용자 입력을 수집하거나 다양한 설정 옵션을 제공하는 것은 중요합니다. Streamlit은 이러한 기능을 제공하는 사이드바를 간단하게 추가할 수 있도록 지원합니다. 이번 글에서는 Streamlit의 사이드바를 활용하는 방법을 살펴보겠습니다. 1. 사이드바에 제목 및 헤더 추가 사이드바는 메인 콘텐츠 영역 외부에 위치한 추가적인 영역으로, st.sidebar를 통해 접근할 수 있습니다. 사이드바에 제목과 헤더를 쉽게 추가할 수 있습니다. st.sidebar.title('타이틀 -대') st.sidebar.header('타이틀 -중') st.sidebar.subheader('타이틀 -소') 2. 사이드바에 선택 상자 .. 2023. 8. 9. 이전 1 2 3 4 5 6 ··· 13 다음