이상탐지9 Anomaly Detection_LOF LOF(Local Outlier Factor) 이상탐지는 데이터셋에서 이상치(outlier)를 찾는 기술 중 하나입니다. 이 기술은 데이터 포인트의 군집(clustering)과 밀도(density)를 기반으로 이상치를 탐지합니다. LOF 이상탐지는 다음과 같은 세 단계로 구성됩니다. k-Nearest Neighbor(NN) 구하기: 각 데이터 포인트에서 k개의 가장 가까운 이웃을 찾습니다. Reachability Distance 구하기: 각 데이터 포인트에서 이웃까지의 거리를 계산합니다. Local Outlier Factor 계산하기: 각 데이터 포인트의 이웃들과의 Reachability Distance를 비교하여 LOF를 계산합니다. 이론적으로는 LOF가 1인 데이터 포인트는 군집에 속해 있으며, LO.. 2023. 4. 14. Anomaly Detection_KNN KNN(K-Nearest Neighbors)은 지도학습의 한 종류로, 분류나 회귀 문제를 해결하는 알고리즘 중 하나입니다. 주어진 데이터셋에서 새로운 데이터 포인트가 어떤 클래스에 속하는지 예측할 때 사용합니다. KNN은 거리 기반 분류 모델에 속하며, 주어진 데이터셋에서 가장 가까운 K개의 이웃 데이터를 찾아서 대상 데이터를 분류합니다. 분류 문제에서는 이웃 데이터 포인트들의 클래스 중 가장 빈번한 클래스를 예측값으로 사용하며, 회귀 문제에서는 이웃 데이터 포인트들의 평균값을 예측값으로 사용합니다. PyOD 패키지는 이상탐지(anomaly detection) 알고리즘을 정리한 패키지로, KNN을 포함하여 다양한 이상탐지 알고리즘을 제공합니다. KNN을 이용한 이상탐지는 K개의 이웃 데이터를 사용하여 대.. 2023. 4. 12. Anomaly Detection_ Mahalonobis 거리 마할라노비스 거리는 다변량 데이터 분석에서 이상치를 탐지하는 방법 중 하나입니다. 이번 글에서는 마할라노비스 거리를 이용한 이상치 탐지에 대해 알아보겠습니다. 마할라노비스 거리란, 다변량 데이터 분석에서 관측치와 다른 관측치들 간의 거리를 계산하는 방법 중 하나입니다. 이 방법은 관측치가 얼마나 다른 관측치들과 다른지를 측정하고, 이를 이용하여 이상치를 탐지합니다. 이상치는 다른 관측치들과의 거리가 멀어지는 경우로 정의됩니다. 마할라노비스 거리를 이용한 이상치 탐지의 장점은 다음과 같습니다. 첫째, 마할라노비스 거리는 다변량 데이터에 대해 적용할 수 있으므로, 다양한 분야에서 활용이 가능합니다. 둘째, 마할라노비스 거리는 데이터 분포의 모양과 크기를 고려하여 이상치를 탐지할 수 있습니다. 셋째, 마할라노.. 2023. 4. 11. Anomaly Detection_ Box Plot Box Plot은 데이터의 분포를 시각화하는 도구 중 하나로, 데이터의 중심값과 산포도를 한 눈에 파악할 수 있어 데이터 분석에서 매우 유용하게 사용됩니다. 이번 글에서는 Box Plot을 이용한 이상치 탐지 방법에 대해 알아보겠습니다. Box Plot은 데이터의 중앙값, 1사분위수(Q1), 3사분위수(Q3)를 이용하여 상자를 그리고, 상자 외부의 데이터를 이상치로 판단합니다. 이때, 이상치의 기준은 Q1 - 1.5IQR 이하의 값 또는 Q3 + 1.5IQR 이상의 값으로 설정합니다. IQR(Interquartile range)은 Q3 - Q1로 계산됩니다. Box Plot을 이용한 이상치 탐지의 장점은 다음과 같습니다. 첫째, Box Plot은 데이터의 분포를 시각적으로 파악할 수 있기 때문에 데이터의.. 2023. 4. 11. 이전 1 2 3 다음